Principal Component Geostatistical Approach for large-dimensional inverse problems

نویسندگان

  • P K Kitanidis
  • J Lee
چکیده

The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m, and the number of observations, n, is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m2n, though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n. The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m2 as in the textbook approach. For problems of very large m, this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Hierarchical Matrices to Linear Inverse Problems in Geostatistics

Application of Hierarchical Matrices to Linear Inverse Problems in Geostatistics — Characterizing the uncertainty in the subsurface is an important step for exploration and extraction of natural resources, the storage of nuclear material and gasses such as natural gas or CO2. Imaging the subsurface can be posed as an inverse problem and can be solved using the geostatistical approach [Kitanidis...

متن کامل

Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy

This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...

متن کامل

Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy

This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...

متن کامل

Multivariate geostatistical analysis: an application to ore body evaluation

It is now common in the mining industry to deal with several correlated attributes, which need to be jointly simulated in order to reproduce their correlations and assess the multivariate grade risk reasonably. Approaches to multivariate simulation which remove the correlation between attributes of interest prior to simulate and then re-impose the relationship afterward have been gaining popula...

متن کامل

Seeing Invisible Properties of Subsurface Oil and Gas Reservoir through Extensive Uses of Machine Learning Algorithms

Current geostatistical simulation methods allow generating multiple realizations that honor all available data, such as hard and secondary data under certain geological scenarios (e.g. 3D training image-based models, multi-Gaussian law, Boolean models). However, it is difficult to simulate large models that honor highly nonlinear response functions (e.g. remote sensing data, geophysical data or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2014